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ABSTRACT 
Two formulations of q-quantum mechanics based on quantum 

deformations of the Heisenberg equations of motion, are discussed. In one 
the commutator is replaced by the “quommutator”: M,Blq = qAB - (l/q)BA. 
The other involves using the quantum bracket of the time derivative of an 
operator in the equation of motion. Both have advantages and difficulties, 
which are discussed, nlong with several simple examples, the conclusion 
being that these q-quantum mechanics appear to be sensible. 

1. Introduction and Motivation 

This is a report of work done in collaboration with A. Chodos. [ll 
Quantum groups [2], or, more properly, a quantized deformation of a 

universal enveloping algebra, U,(g), typically for some Lie algebra g, have 
been found to play important roles in integrable systems, including exactly 
solvable lattice models, as well as conformal field theories (arising in 
statistical mechanics systems and in string theories),and in topological 
field theories and related knot theory. In all of these the Yang-Baxter 
equation plays a central role. [2,3] In much of this work the role of 
quantum groups, while crucial in the analysis of these systems, has not 
been that of a direct symmetry. 

However, in the work of Pasquier and Saleur [41 the generators of the 
quantum Lie algebra SUM actually commute with the Hamiltonian of the 
one-dimensional spin chain they investigated, and so su(2jq is a direct 
symmetry of the system. Yet in the cases when the deforming parameter Q 
is not a root of unity, it has been pointed out [5] that, by making use of the 
deforming maps constructed by Curtright and Zachos [61, these 
Hamiltonians are also necessarily invariant under ordinary su(2). In fact 
there is a general theorem [5] that if the Hamiltonian is invariant under gq, 
it is also invariant under g, since U(g) and U,(g) are isomorphic as 
algebras. So at least in these qn # 1 cases, it seems that these spin chain 
models do not exhibit any radically new physics. This is confirmed by the 
identical representation content of the deformed algebra and its classical 
parent when qn f 1. Of course, there are striking and significant 
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differences when q is a root of unity, and, not surprisingly, that is where 
most of the interest and work has been concentrated. 

In connection with the study of quantum groups, there have been 
various investigations of deformed harmonic oscillator algebras and 
thereby deformed Heisenberg algebras 171. For example, one can use the 
“quommutator” instead of the commutator to get the deformed Heisenberg 
algebra for a single oscillator: qbbt - (l/q)btb = lb,btlq = 1. These have been 
studied for their own sake, and also for constructing representations of 
quantum groups. 

In the light of all this, a natural question armies, whether it may be 
possible to use the idea of a quantum deformation in a yet more central way, 
directly in the dynamics and structure of quantum mechanics itself, so that 
one considers a quantum deformed quantum mechanics, or more 
compactly (and with less emphasis on the apparent pleonasm due to the 
misnominous quantum in quantum groups), a q-quantum mechanics. 
This is guaranteed to have immediate physical consequences, and, it 
appears so far, that they can be made sensible. 

There are a number of apparently inequivalent ways to deform the 
quantum equations of motion, but we concentrate here on only two. In 
order to explain them, it may be useful to consider the q-deformed 
su(Z)-algebra, suq(2) (which is really that of slq(2) ). The classical algebra 
can be written: 

[Jo ,J+l = +2J+ ; [J+ , J- 1 = Jo . 

Then one way of writing suq(2) is 

[Jo , J+l = 52 Jk ; [J+ , J- 1 = [JoIs > 

with the q-bracket defined as 

x/2 _ q q-x/2 

[xl, = 
q1/2 _ q-l/2 

(2) 

(3) 

As q -+ 1, the classical algebra is recovered. 
Another appraoch [8] is to deform the left side of the su(2)-commutator 

relations instead of the right, so that one uses the quommutator defined 
above: 

[Jo ,J+l$ =*J+; [J+ , J- 1 l/s = Jo (4) 
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We have used both methods to deform the basic dynamical laws of quantum 
mechanics itself. 

2. Q-Quantum Mechanics 

Following these approaches for writing the commutation relations of a 
quantum group, but now using them in the Heisenberg equations of 
motion, with no suggestion of a quantum group structure, we have two 
ways (at least) to deform. Letting O(t) be an observable in the theory, we 
have: 

method 1) 

method 2) 

i[H(t),O(t)]q=i[qHO-(Vq)OH]=~(t) ; 

i [H(t) , 0 (t) 1 = [i, (t)lq . 

(5) 

6) 

As we shall see, each method has its pros and cons. Method 1) appears to 
have a problem with unitarity, but one can formally integrate the equations 
and one can make sense of expectation values of observables. Method 2) is 
highly non-linear and so, difficult to integrate; however, it appears to be 
unitary. 

Beginning with the first method, Eq. 5, we see that by using the 
Hamiltonian H itself in the deformed equation of motion, we find that H is 
not a constant of the motion: 

l$t) = i [H(t) , H(tllq = i r H2(t1 , (7) 

with r E q - l/q . (8) 

Eq. 7 can be formally integrated, writing Hc = H(t=O) , to give the 
time-development of H: 

Ho 
H(t) = (9) 

1 - irHo t 

Having obtained an expression for H(t), we can now use it to solve Eq. 5 
formally for 0 (t): 

0 (t) = [ 1 - irHot ]-q/r 0 (0) [ 1 - irHot lUqr . (10) 

If it happens that [Ho, 0 (0)l = 0, then using 

-q/r + llqr = -1 , (11) 
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we find for this case, 

0 (0) 
0 (t) = (12) 

l-irHot 

It may be of interest and amusing to observe [9] that if we rather boldly 
let [H, tlq = 0, then indeed H(t) = Ho , i.e., a constant. So we have the usual 
time-evolution and no apparent problems with unitarity. But this requires 
a new and different definition of time for each Hamiltonian! 

Going back to Eq. 10, we note that 

lim [ 1 - irHot ]-q/r = exp(iHot) 
Q+l 

(13a) 

and lim [ 1 - irHot ]l/qr = exp(-iHot) , 
Qll 

(13b) 

so that we recover the usual time-evolution. 
Defining the operators S = [l - irHot]l’qr and s’ = 11 - irHotl-q/r , we note 

that they cannot be inverse to each other (except for q = *l), since as seen 
above S’S = [l - irHot]-1 . Hence time-evolution is not unitary. However, if 
we restrict q to the unit circle, 

q=ei@ , r=2isin0 , (14) 

then, so long as [l + 2sin9 Hot] > 0, S’ = St , so that hermiticity is preserved 
under time-evolution. (Note that if one treats q as a formal variable, as is 
usually done with quantum groups, and so one does not compex conjugate 
it when taking the hermitian adjoint of an expresssion in which q appears, 
then one cannot preserve hermiticity. However, we do not have the formal 
structure of a quantum group here, so how one treats q appears to be a 
matter of choice.) It should be noted that even for the condition in Eq. 14, 
there will be times when the above inequality is violated, so that there is no 
general guarantee that even hermiticity is preserved for all times. But this 
appears to, be the best one can do, so we shall limit our discussion to the 
case q = ele. 

Despite these problems, we have found that it is possible to have quite 
sensible and finite expectation values of operators. To discuss this, let us go 
to the Schrodinger representation [l] for an operator 0 (t) obeying Eq. 10. 



5 

Then the operator O,(t) is time-independent, O,(t) = 0 , and time-evolution 
is given by 

73 (t) = 
<u/w IO ( YO> 

* <Y(t) 1 YO> 
(15) 

We expand the numerator and denominator in eigenstates of Ho, 

Ho In> q &iln) g (16) 

(including a continuous spectrum, if there, despite the notation) to obtain 
for the dominant term at t = tk = - (2sine xk)-l , 

?j(tk) = <kl+) e (17) 

which is, in general, finite. Hence even though (v(tk) I U/(tk)) may be 
infmite, the expectation value of an operator remains finite. 

It also can be demonstrated that in the limit It I + 00 , zt) is 
well-defined, despite <u’ I ul> -+ 0 . 

So eigenstates of Ho are indeed still “stationary states” since <k I 0 1 k) 
is time-mdependent. 

At this point it may be instructive to look at an example from classical 
mechanics, in order to get a clearer notion of the unusual dynamics 
present here. Hence, we consider a q-deformed Poisson bracket, 

dA dB dB dA 
lA,Blq z q-- - (l/q,-- . 

ax op ax ap 
(18) 

Using this we deform Hamilton’s equations of motion to: 

x = (x, Hlq ; ; = lp, Hlq . (19) 

Then for a conventional Hamiltonian of the form H = (p2/2m) + V(x) , one 
finds 
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x =q(p/m) ; i, = - Wq)V(x) , (20) 

and so one obtains the changed equation of motion for x: & = & = -V’(x). 
This is despite the fact that 

ir=lH,Hlq + 0, (21) 

so the Hamiltonian is not conserved. Nevertheless, 

i? = q(p2LfZm) + U/q) V(x) c-42) 

is conserved, {ii, El, = 0. Hence, just because H is not conserved, is not 
necessarily fatal: there are other constants of the motion, and the 
dynamics may be quite sensible. In the case of quantum mechanics, one 
may use the constant operator Ho , whose eigenstates form a useful basis, 
and whose eigenvalues can be thought of as energy. 

In considering quantum mechanics examples, we restrict our 
discussion to one-dimensional cases, and, furthermore, we assume usual 
commutation relations for X and P, so IX, P] = i. One could have, of course, 
also used variables x’ and P’ which quommute, lX’, P’lq = i. We chose the 
simpler commuting case, but it should also be noted there exits an 
admittedly non-linear map between the two kinds of variables: 

X’=f(G)X; P’=h(G)P, (23) 

where the anti-hermitian operator G = (XP + PX) / 2i , and so [G, P] = P , 
and [G, x] = -X, and 

1 C 9 
h(G + 1) = 1 - + 1 1 (24) 

f(G) (G + l/2) q2G q2 - 1 

with C an arbitrary constant. 
One may also consider whether it may be possible to find mapping 

functions similar to f(G) which transform H and any operator 0 so that 
they obey the usual commutator Heisenberg equations of motion rather 
than the quommutator Eq. 6. We have searched for such maps, but due to 
the right-hand-side of Eq. 6 being another operator, and the time derivative 
of 0 itself to boot, rather than simply i as in the X, P case, our attempts to 
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find such maps have been unsuccessful so far. So to the extent that one 
may assume such maps do not exist, it seems that the quommutator 
deformation Eq. 6 is not trivially equivalent to the undeformed case. 

We now go to the case of a “free” particle: H = P2/2m . Since [H, P] = 0, 
P(t) follows Eq. 12, 

P(t) = Pc [l - (irP&nl)tl-I . (25) 

To find the solution for X(t) requires a bit more work, with the result that 

X(t) = Xo [l - (irPo2/2m)t]-l + qPot 11 - (irPs2/2m)tl-2 (26) 

Also in this simple case, X = XT for all t. Furthermore, one can determine 
that the initial commutation relation, lX, PI = i , is preserved in time in this 
case. 

The second example we studied was, of course, the harmonic oscillator: 
H = (P2 + X2)/2 . The expressions for X(t) and P(t) are rather complicated 
now, but they are explicitly given in ref. 1. From them it can be seen that 
the initial relation, [X, PI = i , is now not obviously preserved in time, and 
this is most likely the generic behaviour. 

Let us turn to our second method of deforming the Heisenberg equations 
of motion, Eq. 6. Thus we assume the equation of motion of an operator O(t) 
to be given by: 

i 1 H(t), 0 (t) 1 = II6 (t)l, = 

@I2 _ ,-h/2 

(27) 
ql/z _ q-lI2 

Again, as q + 1 we recover the usual equations of motion. Unlike the 
quommutator case of Eq. 5, this deformation has the obvious advantage 
that, as usual, operators commute with themselves, so that, in particular, 
the Hamiltonian itself is a constant of the motion and energy in conserved. 
Furthermore, hermiticity appears to be preserved in the cases when q is 
treated as a formal variable, or when q = etc. 

In order formally to integrate Eq. 27, let us write q = eh . Then 
[xl, = sinh(hx/2) / sinh(b/2) , and, writing l? z sinh(h/2), we find for 0 (t): 
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2t O(t) d0 
- = 

’ 
(28) 

h I 
O(O) sinh-‘(il? [H,O ] ) 

Due to the non-linearities, it is difficult to proceed further in the general 
case. If one wishes to go to the Schrbdinger representation, then one 
probably has to use a non-linear Schrodinger equation [lo]. 

But for the free particle the differential equations separate simply, and p 
is constant, so that we find for X(t): 

X(t) - X(0) = t (2/h) sinh-‘(r p) , (29) 

which is a well-behaved, single-valued function. This result is certainly 
different from the usual quantum mechanical result, X(t) = pt, but not only 
is it quite sensible, it also reduces to this usual behaviour as q + 1. It is 
also apparent that the behaviour given by Eq. 29 is very different from that 
obtained from the quommutator deformation, Eq. 26. Time evolution is 
obviously unitary here in this free case. Although we have not yet been able 
to establish unitarity in general, we suspect it to be there. These are yet 
more indications that the two methods are not equivalent. 

When we seek to go beyond the free particle, the non-linearity of this 
deformed quantum mechanics confronts us squarely. Even for the 
harmonic oscillator, the coupled non-linear differential equations, 

X(t) = (2/h) sinh-’ [h” P(t)] , i(t) = (2/h) sinh-’ [FX(tll , (30) 

do not lend themselves to a closed-form solution, although a numerical 
solution is, of course, possible. 

3. Concluding Remarks 

The two methods we have studied are not the only possible deformations 
one could employ, as there are others suggested from a consideration of 
quantum groups. For example, there exists the so-called quantum 
derivative 1111: 

f(q”2U) - flq-’ ‘%.ll 
D&(u) q (31) 

u(q’ 12 _ q-1 12) 

which becomes the usual derivative when q + 1. So one could also consider 
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as deformations of the Heisenberg equations: DtO = i[H, 0 I , which is 
similar to our second method, or DtO = i[H, 0 I9 , which is similar to a 
combination of methods 1) and 2). However, both of these suggestions are 
even harder to integrate than Eq. 6. Hence, we have avoided a detailed 
study of these choices simply on pragmatic grounds. 

Besides its intrinsic interest and its value as a tool for probing the 
essentials of mechanics, one of the possible practical implications of a 
q-quantum mechanics lies in the suggestion that the quantum deformation 
parameter acts as a cutoff which discretizes the time-evolution of a system. 
This comes about from looking at the quantum time-derivative above, which 
clea,rly appears as a discretization. From another viewpoint, the 
time-evolution operator S(t) introduced earlier can also be considered a 
discretization, now of the exponential e-iHot . 

One of the many open questions is whether and how either or both of our 
methods of deforming the Heisenberg equations, can be generalized to 
many degrees of freedom and finally field theory. This will be of interest, 
since it is clear much can be learned from these deformations. We saw 
this, for example, in studying Eq. 5, where there is a lack of unitarity. 
However, what the lack of unitarity seems to imply, is that just as in the 
passage from classical to usual quantum mechanics one gives up 
determinism in favour of probability amplitudes which are defined as 
matrix elements in a Hilbert space, here one is abandoning the physical 
significance of the Hilbert space inner product but, it appears, retaining the 
meaning of an expectation value, the appropriate ratio of such inner 
products. All in all, q-quantum mechanics is an excellent laboratory for 
exploring what is truly essential for a sensible mechanics. 
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